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The design of artificial receptors, which efficiently bind amino 1004 Ala 7
acids under physiological conditions, still remains a challenging | K, =2100M"
task! Most amino acid receptors reported in the literature so far 804
need either hydrophobit ¢ and/or strong metalligand inter- - ] —
actiondf9-2to achieve substrate binding in water. We now present 2 60- Asp 8
for the first time a new tris-cationic receptbwhich binds amino % ] [ K,=480M"
acid carboxylates efficiently with,ss> 10° M~ in water solely E 40-
based on electrostatic interactions. Furthermdreshows an 8 Glu9
unexpected cooperative 2:1 complex formation witkacetyl R ] K =460 M"
glutamate-but not aspartate. 20- K‘f 3300 M
The receptor design is based on our guanidiniocarbonyl pyrroles, 1
which we introduced for the binding of carboxylates in polar 0 T T ' T T ' J

solvents® Their H-bond-enforced ion pairs with amino acid
carboxylate are much stronger than those of other organic cations
(e.g., the parent guanidinium catichput still not strong enough Figure 1. Binding isotherms for the amide NH of the amino acid
to allow efficient binding in water at millimolar salt concentrations. C2oxylatesr=9 (co = 1.5 mM, NMe, salts) upon the addition of tris-
" . . cationl (chloride salt) in 90% water/DMSO. The solid lines represent the

We reasoned that the additional positive chargésshould further curve fitting.
stabilize the complex. The synthesis of tris-catibis shown in
Scheme 1. The pyrrole achilis first coupled with tBoe-guanidine
3to give4. A reductive amination with amino acklprovided the
protected receptd. After deprotection and ion-exchange with HCI,
the water-soluble tris-catioh was obtained as the chloride salt.

The binding properties of this new tris-cati@mwere studied by
NMR titration experiments (for more details on the titrations and
the data analysis, see Supporting Informatfoh).40% water in
DMSO (v/v), the tris-catiorl bindsN-acetyl+-alanine carboxylate
7 so effectively that the binding isotherm shows only a linear
increase up to a ratio of 1:1, indicating an association constant of
K = 10° M1, Hence, the complex is at least 2 orders of magnitude
more stable than with corresponding monocationic guanidiniocar- ﬁ’%“’e 2 Calcylaéeg Strt’Ct.U'e;OLth‘zcgmp'ex bgtwgemd? [nonpolar
bonyl pyrroles K < 10® M~1 in 40% water in DMSO$¢4Even in ydrogens omitted for clarity, H-bond distances in A).
90% water (10% DMSO was added for solubility reasofisjinds Scheme 1. Synthesis of Tris-Cation 1
alanine carboxylat& with a surprisingly high association constant A o

H t)
of K = 2100 M1, as obtained from a nonlinear curve fitting of YQ\( tBoc-guanidine (3) OY[MN\\(NH Boc
the binding isotherm (Figure 1). To the best of our knowledge, H H OH PYBOP, NMM N NH

equiv. tris-cation 1

tris-cation 1 is hence the first simple receptor that allows the 2 DMF H H4 ©

efficient complexation of an amino acid carboxylate in water solely 7

based on electrostatic interactions witt> 108 M—1 at millimolar CbzHN._-COOMe  \apH.cN //Q\(o

salt concentrations and, therefore, medium ionic strength. + H - _NH H pnN_ NHBoc
This surprisingly efficient binding probably results from the HzN MeOH H 6

clustering of electrostatic interactions in this binding motif. s IV'eooc/\NHCbz NH

However, the three charges do not contribute equally to the complex

stability, as can be seen by comparison of tris-cafionith the I\ 0

parent guanidiniocarbonyl pyrrole monocati#iand a previously 1. Hp, P/C, MeOH * NH H HN__NH2

reported dicatiod2 The significantly improved affinity ofl must, 2.H* 5'/ 2 ?(

therefore, come from the terminatammonium grouf.According MeOOC/\N+H3 1 NH;

to the calculated energy-minimized strucfufer the complex

between tris-catiorl and 7, this ammonium group can form an  substrate binding is expected, even though tris-catié chiral,
additional chelate interaction with the two carboxylate oxygens and indeedN-acetylp-alanine carboxylate is bound with the same
(Figure 2). On the basis of this complex structure, no stereoselectiveaffinity as its enantiomer = 2040 M™1).
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Figure 3. Steric and/or electrostatic interactions (red) prevent the formation
of a 2:1 complex for aspartate but not glutamate.
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Figure 4. Indicator-displacement assay in water ([GFLOuM, [1] = 1

mM, [9] = 0.5 mM in 2 mM bis-tris buffer, pH= 6.3). Inset: Naked-eye
detection of glutamate in aqueous DMSO.

Tris-cationl should also be prone for the binding of multianionic
substrates. We, therefore, tested its affinityNeacetyl+-aspartate
8 andN-acetylt-glutamate9. In 90% water/DMSO (v/v), aspartate
8forms a 1:1 complex with tris-catichwith an association constant
of 480 M1 (Figure 1)8 A Job plot confirmed the formation of a
1:1 complex. Surprisingly, the binding d-acetyl glutamate9,
which compared to aspartaehas only one additional methylene
group in the side chain, is completely different. Receftéorms
a 2:1 complex with glutamat® (receptor:glutamate), and the
sigmoidal curvature of the binding isotherm indicates a positive
cooperativity effect in the formation of this 2:1 complex (Figure
1).° The tris-cationl is hence capable of differentiating between
glutamate and aspartate, which is remarkable regarding their
structural similarity and flexibility. A possible explanation is
suggested in Figure 3. The smaller distance between the two
carboxylates in alanine compared to glutamate might prevent the
formation of 2:1 complexes due to unfavorable steric/electrostatic
interactions.

The positive cooperativity in the binding dfto glutamate is
also evident from the binding constants. A nonlinear curve fitting
of the titration data with a 2:1 association model provided=
460 M~t andK, = 3300 M1, The binding constant for the second
association step is larger by a factor of 7 than the one for the first
step K; < Ky), leading to the observed positive cooperativity. Such
allosteric binding processes are tremendously important in many
biological system§,but still difficult to achieve in small artificial
receptors?

The binding affinity of tris-catiorl for amino acid carboxylates
is large enough to allow their naked-eye detection using an indicator
displacement assdy,as shown for glutamate as an example in
Figure 4. The fluorescence of carboxyfluorescein CF is quenched

in the presence of tris-catioh due to complex formation and
increases again upon the addition of glutamate, a much better
binding substrate. The simple tris-catidnis, of course, not yet
selective enough for different amino acid carboxylates to allow their
distinction, but the introduction of additional binding sites, for
example, using the ester group Inshould allow the design of
modified versions with improved selectivity for individual amino
acids. Such work is currently in progress.

In conclusion, we show here that a clustering of electrostatic
interactions as in tris-catiohallows the efficient complexation of
amino acid carboxylates in water. Additional hydrophobic or
metak-ligand interactions are not needed. Furthermore, even small
and flexible artificial receptors can show remarkable cooperativity,
thereby discriminating between structurally closely related guests.
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